228 research outputs found

    Conic Multi-Task Classification

    Full text link
    Traditionally, Multi-task Learning (MTL) models optimize the average of task-related objective functions, which is an intuitive approach and which we will be referring to as Average MTL. However, a more general framework, referred to as Conic MTL, can be formulated by considering conic combinations of the objective functions instead; in this framework, Average MTL arises as a special case, when all combination coefficients equal 1. Although the advantage of Conic MTL over Average MTL has been shown experimentally in previous works, no theoretical justification has been provided to date. In this paper, we derive a generalization bound for the Conic MTL method, and demonstrate that the tightest bound is not necessarily achieved, when all combination coefficients equal 1; hence, Average MTL may not always be the optimal choice, and it is important to consider Conic MTL. As a byproduct of the generalization bound, it also theoretically explains the good experimental results of previous relevant works. Finally, we propose a new Conic MTL model, whose conic combination coefficients minimize the generalization bound, instead of choosing them heuristically as has been done in previous methods. The rationale and advantage of our model is demonstrated and verified via a series of experiments by comparing with several other methods.Comment: Accepted by European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD)-201

    Multi-source Domain Adaptation via Weighted Joint Distributions Optimal Transport

    Get PDF
    This work addresses the problem of domain adaptation on an unlabeled target dataset using knowledge from multiple labelled source datasets. Most current approaches tackle this problem by searching for an embedding that is invariant across source and target domains, which corresponds to searching for a universal classifier that works well on all domains. In this paper, we address this problem from a new perspective: instead of crushing diversity of the source distributions, we exploit it to adapt better to the target distribution. Our method, named Multi-Source Domain Adaptation via Weighted Joint Distribution Optimal Transport (MSDA-WJDOT), aims at finding simultaneously an Optimal Transport-based alignment between the source and target distributions and a re-weighting of the sources distributions. We discuss the theoretical aspects of the method and propose a conceptually simple algorithm. Numerical experiments indicate that the proposed method achieves state-of-the-art performance on simulated and real datasets

    Relative Comparison Kernel Learning with Auxiliary Kernels

    Full text link
    In this work we consider the problem of learning a positive semidefinite kernel matrix from relative comparisons of the form: "object A is more similar to object B than it is to C", where comparisons are given by humans. Existing solutions to this problem assume many comparisons are provided to learn a high quality kernel. However, this can be considered unrealistic for many real-world tasks since relative assessments require human input, which is often costly or difficult to obtain. Because of this, only a limited number of these comparisons may be provided. In this work, we explore methods for aiding the process of learning a kernel with the help of auxiliary kernels built from more easily extractable information regarding the relationships among objects. We propose a new kernel learning approach in which the target kernel is defined as a conic combination of auxiliary kernels and a kernel whose elements are learned directly. We formulate a convex optimization to solve for this target kernel that adds only minor overhead to methods that use no auxiliary information. Empirical results show that in the presence of few training relative comparisons, our method can learn kernels that generalize to more out-of-sample comparisons than methods that do not utilize auxiliary information, as well as similar methods that learn metrics over objects

    A Unifying View of Multiple Kernel Learning

    Full text link
    Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments

    Large-scale Nonlinear Variable Selection via Kernel Random Features

    Full text link
    We propose a new method for input variable selection in nonlinear regression. The method is embedded into a kernel regression machine that can model general nonlinear functions, not being a priori limited to additive models. This is the first kernel-based variable selection method applicable to large datasets. It sidesteps the typical poor scaling properties of kernel methods by mapping the inputs into a relatively low-dimensional space of random features. The algorithm discovers the variables relevant for the regression task together with learning the prediction model through learning the appropriate nonlinear random feature maps. We demonstrate the outstanding performance of our method on a set of large-scale synthetic and real datasets.Comment: Final version for proceedings of ECML/PKDD 201

    Analyzing sensory data using non-linear preference learning with feature subset selection

    Get PDF
    15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004The quality of food can be assessed from different points of view. In this paper, we deal with those aspects that can be appreciated through sensory impressions. When we are aiming to induce a function that maps object descriptions into ratings, we must consider that consumers’ ratings are just a way to express their preferences about the products presented in the same testing session. Therefore, we postulate to learn from consumers’ preference judgments instead of using an approach based on regression. This requires the use of special purpose kernels and feature subset selection methods. We illustrate the benefits of our approach in two families of real-world data base

    ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression

    Get PDF
    We applied several regression and deep learning methods to predict fluid intelligence scores from T1-weighted MRI scans as part of the ABCD Neurocognitive Prediction Challenge (ABCD-NP-Challenge) 2019. We used voxel intensities and probabilistic tissue-type labels derived from these as features to train the models. The best predictive performance (lowest mean-squared error) came from Kernel Ridge Regression (KRR; λ=10\lambda=10), which produced a mean-squared error of 69.7204 on the validation set and 92.1298 on the test set. This placed our group in the fifth position on the validation leader board and first place on the final (test) leader board.Comment: Winning entry in the ABCD Neurocognitive Prediction Challenge at MICCAI 2019. 7 pages plus references, 3 figures, 1 tabl

    Feature selection for chemical sensor arrays using mutual information

    Get PDF
    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays

    Evolving training sets for improved transfer learning in brain computer interfaces

    Get PDF
    A new proof-of-concept method for optimising the performance of Brain Computer Interfaces (BCI) while minimising the quantity of required training data is introduced. This is achieved by using an evolutionary approach to rearrange the distribution of training instances, prior to the construction of an Ensemble Learning Generic Information (ELGI) model. The training data from a population was optimised to emphasise generality of the models derived from it, prior to a re-combination with participant-specific data via the ELGI approach, and training of classifiers. Evidence is given to support the adoption of this approach in the more difficult BCI conditions: smaller training sets, and those suffering from temporal drift. This paper serves as a case study to lay the groundwork for further exploration of this approach
    • …
    corecore